Gelweave Valsalva™

The world’s first anatomically designed aortic root graft
Vascutek, a Terumo company, is a world leader in the design and manufacture of products that address the needs of vascular and cardiovascular clinicians throughout the world.

For almost 30 years, Vascutek has applied advanced and innovative technologies to develop a wide portfolio of products which include an extensive range of sealed woven and knitted polyester grafts for peripheral, abdominal and cardiothoracic surgery. Additionally, Vascutek offers an extensive range of sealed and unsealed ePTFE grafts for peripheral and vascular access applications.

History of Gelweave Valsalva™ Grafts

1982
Vascutek Ltd. founded

1983
Development of gelatin sealant begins

1992
First Gelweave™ grafts produced

2001
Gelweave Valsalva™ graft launched outside USA*

2002
Vascutek becomes part of Terumo Corporation

2010
Gelweave Valsalva™ long-term follow-up published¹

*510(k) clearance granted in 2002
Gelweave Valsalva™ Graft

- FDA 510(k) clearance granted June 2002
- First on the market and available for over 10 years
- Approved worldwide and used in 50 countries
- Over 20,000 patients treated
- Over 30 articles and papers published

"The ability of the Valsalva™ graft to provide 3 independent sinuses of normal shape and dimension makes the reimplantation procedure applicable to virtually every patient. This in turn will result in improved standardization and greater reproducibility of results."¹

The Graft Design
- mimics sinus geometry on implantation¹ and enables valve leaflet motion similar to normal individuals¹,⁴
- relieves tension on the coronary anastomoses may reduce postoperative bleeding and late pseudoaneurysm formation⁵
- may provide potential for increased valve longevity⁴,⁶

Stress Charts
Von Mises charts showing stress (in red) around the coronary ostia on a straight graft model compared to reduced stress on a graft model with sinuses of Valsalva present in Gelweave Valsalva™ graft.

Published literature demonstrates that the graft design enables:
- a more physiological flow pattern⁶
- relieves tension on the coronary anastomoses with the opportunity of reduced postoperative bleeding and incidence of pseudoaneurysm formation⁵
- stentless and stented biological valve conduits¹,²,³
OBJECTIVE

The Valsalva graft is a specifically designed Dacron graft that, on implantation and pressurization, generates pseudosinuses of Valsalva. We reviewed a multicenter experience of the reimplantation procedure with the Valsalva graft in patients with aneurysms involving the aortic root.

METHODS

A total of 278 patients underwent valve-sparing aortic root replacement using the Valsalva graft at 4 different Italian cardiac surgery centers and were studied by clinical assessment and echocardiography. Of the 278 patients, 220 were men (79%), with a mean age of 56 ± 15 years. Of the patients, 42 (15%) had Marfan syndrome, 31 (11%) had a bicuspid aortic valve, 13 (5%) had acute aortic dissection, and 136 (49%) had grade 3 or 4+ aortic insufficiency. Concomitant cardiac procedures were performed in 78 patients (28%). Additional aortic leaflet repair was necessary in 25 patients (9%). The mean crossclamp time was 120 ± 27 minutes.

RESULTS

There were 5 (1.8%) operative and 5 (1.8%) late deaths. The mean follow-up was 52 ± 28 months (range, 2–112 months) and was 100% complete. The cumulative actuarial survival was 95.2% (268 patients). A total of 32 patients (11%) had grade 3 to 4+ aortic insufficiency, and 17 of these required late aortic valve replacement (range 3–78 months). At 10 years of follow-up, the freedom from aortic valve reoperation rate was 91%, and the rate of freedom from residual aortic insufficiency not needing reoperation was 88%.

CONCLUSIONS

The reimplantation type of valve-sparing procedure can be facilitated by the use of the Valsalva graft and can be performed with satisfactory perioperative and midterm results. How an optimal root reconstruction will affect the second decade of follow-up has yet to be determined.
References and Resources for Further Study

1. Use of the Valsalva graft and long-term follow-up
J Thorac Cardiovasc Surg, 2010;140:523-7

2. Modified Bentall Operation With Bioprosthetic Valved Conduit: Columbia University Experience
Tabata M, Takayama H, Bowdesh ME, Smith CR and Steward AS

3. Modified Bentall Operation With a Novel Biologic Valved Conduit
Steward AS, Takayama H and Smith CR
Ann Thorac Surg 2010;89:938-42

4. Analysis of Valve Motion After the Reimplantation Type of Valve-sparing Procedure (David I) With a New Aortic Root Conduit

5. Re-creation of a sinu-like graft expansion in Bentall procedure reduces stress at the coronary button anastomoses: a finite element study
Weltert L, De Paulis R, Scrafta R, Maselli D, Bellisario A and D’Alessandro S

Schoenoff FS, Loutapatsis C, Immer FF, Stoupis C, Carret TP and Eckstein FS
The Journal of Heart Valve Disease 2009;18:380-385

7. Results of Aortic Valve-Sparing Operations: Experience With Remodeling and Reimplantation Procedures in 65 Patients
Bethel BT and Cameron DE
Ann Thorac Surg 2004;78: 767-72

8. Valve-Sparing Aortic Root Replacement in Marfan Syndrome
Cameron DE and Viccella LA
Seminars in Thoracic and Cardiovascular Surgery, Pediatric Cardiac Surgery Annual 2005; 8:103-111

9. Aortic Valve-Sparing Operations: Early and Midterm Results
The Heart Surgery Forum 2006; 9 (3):2005-177

10. Valsalva Prosthesis in Aortic Valve-Sparing Operations
Di Bartolomeo R, Pacini D, Martin-Suarez S, Lotorte A, Dell’Amore A, Ferlito M, Bracchetti G and Bozzetti G
Interactive Cardiovascular and Thoracic Surgery 2006; S: 294-298

11. Reimplantation Technique (David Operation) for Multiple Sinus of Valsalva Aneurysms
Hughes GC, Swaminathan M and Wolfe WG
Ann Thorac Surg 2006;82:e14-6

Hess P, Jr, Klodell CT, Beaver TM and Martin TD

13. The ideal theoretical graft oversizing in valve-sparing aortic operations with a standard tubular or a Valsalva graft
Maselli D, Borelli G, Amerini A, Bajona P, Bellini L.
Surgery 2005 (805) 845-849

14. Comparison of distensibility of the aortic root and cusp motion after aortic root replacement with two reimplantation techniques: Valsalva graft versus tube graft
Matsumori M, Tanaka H, Kawanishi Y, Onishi T, Yamashita T, Okada Kenji Okita Y

15. Early Results of Valve-Sparing Reimplantation Procedure Using the Valsalva Conduit: A Multicenter Study
Ann Thorac Surg 2006;82:862–72

16. Valve-Sparing Aortic Root Replacement: Early Experience With the De Paulis Valsalva Graft in 51 Patients
Patel ND, Williams JA and Barreno CJ, Bethel BT, Fitzon TP, Dietz HC, Lima JAC, Spevak PJ, Golt VL, Viccella LA, and Cameron DE
Ann Thorac Surg 2006;82:548–553

17. Early Results of Valve-Sparing Aortic Root Replacement in High-Risk Clinical Scenarios
Kerendi F, Guyton RA, Vega JD, Kilgo PD, MS, and Chen EP

18. Nueva técnica de reparo de válvula aórtica con reemplazo de aorta ascendente y preservación de senos de valsalva con injerto de dacron modificado
Sandova LF, Santos HC, Calcedo VA y Orjuela HL

19. A technique to reposition sinotubular junction in aortic valve reimplantation procedures with the De Paulis Valsalva graft
Maselli D and Minzioni G.

20. A simple method to adapt the height of the sinotubular junction of the De Paulis Valsalva graft to the height of the patient’s sinuses in David reimplantation procedure
Mazzola A, Gregorini R, Villani C and Giancola R.

22. Aortic root reconstruction by aortic valve-sparing operation (David type I reimplantation) in Marfan syndrome accompanied by annuloaortic ectasia and acute type-A aortic dissection

23. Adjustable Sinotubular Junction for Aortic Valve Reimplantation Procedures
Maselli D, Guarracino F, Bajona P, Bellini L and Minzioni G

24. Reimplantation Valve-Sparing Aortic Root Replacement in Marfan Syndrome Using the Valsalva Conduit: An Intercontinental Multicenter Study
Settepani F, Setto WY, Pacini D, De Paulis R, Chiariello L and DI Bartolomeo R, Giallotti R and Bavaria JE
Ann Thorac Surg 2007;83:S769 –73

25. Aortic root substitution after aortic valve replacement: a prosthesis-sparing operation
Pacini D, Villa E, Martin-Suarez S and DI Bartolomeo R

Ital Heart J 2000; (7) 457-463

27. Opening and Closing Characteristics of the Aortic Valve after Valve-Sparing Procedures Using a New Aortic Root Conduit

28. Biological Bentall procedure with a Valsalva graft for a small aortic root
Ukai A and Ueda Y

29. Coronary flow characteristics after a Bentall procedure with or without sinuses of Valsalva

30. Modified Bentall operation: the double sewing ring technique
Albertini A, Dell’Amore A, Zussa Gandi Landmara M

31. Aortic root substitution after aortic valve replacement: a prosthesis-sparing operation
Pacini D, Villa E, Martin-Suarez S and DI Bartolomeo R.

32. Aortic valve sparing operations
De Paulis R, De Matteis GM and Chiariello L.
Heart, January 2001, Vol 85, No 1, p.5

33. Bentall Procedure With a Stentless Valve and a New Aortic Root Prosthesis
De Paulis R, Nardi P, De Matteis GM, Poliscia P and Chiariello L.
Ann Thoracic Surg 2001;71:1375-6

34. One-year appraisal of an new aortic root conduit with sinuses of Valsalva

35. Compliance of the Valsalva Graft’s Pseudosinuses at Midterm Follow-Up with Cardiovascular Magnetic Resonance
Monti L, et al.
<table>
<thead>
<tr>
<th>Bore Size Diameter (mm)</th>
<th>Max Skirt Diameter (mm)</th>
<th>Body Length (cm)</th>
<th>Skirt Length (mm)</th>
<th>Collar Length (mm)</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>32</td>
<td>15</td>
<td>24</td>
<td>10</td>
<td>730024ADP</td>
</tr>
<tr>
<td>26</td>
<td>34</td>
<td>15</td>
<td>26</td>
<td>10</td>
<td>730026ADP</td>
</tr>
<tr>
<td>28</td>
<td>36</td>
<td>15</td>
<td>28</td>
<td>10</td>
<td>730028ADP</td>
</tr>
<tr>
<td>30</td>
<td>38</td>
<td>15</td>
<td>30</td>
<td>10</td>
<td>730030ADP</td>
</tr>
<tr>
<td>32</td>
<td>42</td>
<td>15</td>
<td>32</td>
<td>10</td>
<td>730032ADP</td>
</tr>
<tr>
<td>34</td>
<td>44</td>
<td>15</td>
<td>34</td>
<td>10</td>
<td>730034ADP</td>
</tr>
</tbody>
</table>